

Effective from Session:							
Course Code	EC506	Title of the Course	VLSI Design	L	Т	Р	C
Year	Ι	Semester	II	3	1	0	4
Pre-Requisite		Co-requisite					
Course Objectives	 To understand the concept To Evaluate Low Power D To analyze basic building NORA CMOS logic, Sing To understand Synchronou Moore Machines, FSM c designs. To identify the technology Circuits. To understand and to identify 	s of design of MOS besign and Layout d blocks in advance le Phase Dynamic 1 us and Asynchrono lesign PSPICE sin for bipolar and BiC tify the PLA, PAL,	CMOS circuits and syste lesign rules and stick diag c CMOS logic design, De ogic, Differential CMOS us Systems, CMOS flip fl nulation Programme to s CMOS logic Gate and Gall FPGA and Verilog HDL.	ems. ram. omine op de simul ium 4	o CM esign, ate th Arseni	OS log Mely a le CM ¹ de Dig	gic, and OS ital

	Course Outcomes								
001	Given a system Students shall be able to understand design of MOS/CMOS circuits and systems. Able to Evaluate								
COI	Low Power Design and design Layout design rules and stick diagram.								
	For a given system, student shall be able to analyze basic building blocks in advance CMOS logic design, Domino								
CO2	CMOS logic, NORA CMOS logic, Single Phase Dynamic logic, Differential CMOS, can design of								
	Adders/Subtractor and Multiplexers/Decoder/Encoder/Multiplier.								
CO3	For a given Sequential Circuit system students can understand Synchronous and Asynchronous Systems, CMOS flip								
003	flop design, Mely and Moore Machines, FSM design PSPICE simulation Programme to simulate the CMOS designs.								
CO 4	Students shall be able to identify the technology for bipolar and BiCMOS logic Gate and Gallium Arsenide Digital								
CO4	Circuits.								
C05	Students shall be able to identify the PLDs, FPGA and Implementation using Hardware Descriptive Language.								
005									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Traditional CMOS Design	System approach to VLSI design. Pseudo NMOS logic, Transistor equivalency, CMOS logic and Gate design, Transmission Gate logic design, Delay of MOS circuits, Basics of Low Power Design, Layout design rules and stick diagram.	8	1
2	Advance CMOS Logic Design	Domino CMOS logic, NORA CMOS logic, Single Phase Dynamic logic, Differential CMOS, Dynamic Differential Logic, Design of Adders/Subtractor and Multiplexers/Decoder/Encoder/Multiplier.	8	2
3	Sequential Circuit Design	Synchronous and Asynchronous Systems, CMOS clock Latches, D, SR, JK, T Flip Flops, CMOS flip flop design, Synchronous design Techniques, Mely and Moore Machines, FSM design, Design of MOS SRAM, DRAM, CMOS PROMs, EPROMs, EEPROMs and Flash Memories.	8	3
4	Bipolar and BiCMOS logic Gate & Gallium Arsenide Digital Circuits	Emitter coupled logic gate, Current mode logic, BiCMOS logic gate, Alternatives BiCMOS approaches and circuits.MESFET second order effects, Logic design with MESFET, Capacitively enhanced logic and Heterojunction Bipolar Technology.	8	4
5	Design of Programmable Modules	Standard cells, PLA, PAL, PLDs, FPGA, Fused based FPGA, Mixed Analog/Digital System design, Implementation using Verilog HDL/VHDL.	8	5

Reference Books:								
• Jan. M. Rabaey, Anitha Chandrakasan, Borivoje Nikolic, "Digital Integrated Circuits", PHI, Second Edition								
• Neil H.E Weste, Kamran Eshraghian, "Principles of CMOS VLSI Design", 2 nd Edition, Pearson, 1998.								
Ken Martin, "Digital Integrated Circuits Design, Oxford Indian Edition.								
• Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital IC- Analysis and Design", 3 rd Edition, TMH.								
• Douglas A Pucknell, Kamaran Eshragian, "Basic VLSI Design, 3rd edition, PHI, 1994.								
• Wayne Wolf, "Modern VLSI Design, 2nd Edition, Prentice Hall 1998.								
e-Learning Source:								

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	3	1		1			1			2	3	2		1
CO2	3	3	3	1		1	1		1			1	3		1	
CO3	3	2	3	2	1	1			2			1	3		1	
CO4	3	3	2	2	1				1			2	3	2		
CO5	3	3	2	1					1			2	3		1	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:										
Course Code	EC507	Title of the Course	Analog MOS Circuits	L	Т	Р	С			
Year	Ι	Semester	Π	3	1	0	4			
Pre-Requisite	VLSI	Co-requisite								
	Design	co-requisite								
	• To learn about differential amplifier and single stage MOS amplifiers.									
	To understand different types of MOS current mirrors and frequency response.									
Course Objectives	To tell the concept of feedback in MOS circuits and noise.									
Course Objectives	• To	teach about oscillators a	and PLL.							
	To impart knowledge of operational amplifiers and switched capacitor circuits.									

	Course Outcomes									
CO1	Students will know about different topologies of single stage MOS amplifiers. Students will able to understand the									
	concept of differential amplifiers.									
CO2	Student shall be able to learn and understand about MOS current mirrors and frequency response of circuits.									
CO3	Students shall able to know about noise in MOS circuits. Students will also learn about feedback and their different									
	topologies.									
CO4	Student will know about different oscillator circuits their operation. Students willlearn about phase lock loop									
CO5	switched capacitor circuits and their applications as amplifiers, filters, integrators and ADC/DAC.									

Unit No.	Title of the Unit	Content of Unit	Contac t Hrs.	Mapped CO
1	Single Stage MOS Amplifiers	Common source stage with resistive load, Diode connected load and Source degeneration, Source follower, Common gate stage, Cascode stage Differential Amplifiers: Quantitative and qualitative analysis of basic differential amplifier, Common mode response, Differential pair withMOS Loads	8	1
2	MOS Current Mirrors	Basic current mirrors, Cascode current mirrors, Active current mirrors Frequency Response of Amplifiers: Miller effect, Poles and zeroes, Analysis of CS, CD, CG stage, Cascode stage and Differential pair	8	2
3	Noise	Statistical Characteristics of Noise, Thermal noise, Flicker noise, Representation of noise in circuits, Noise in CS, CD, CG stage, Cascode stage and Differential pair Feedback: Properties of Feedback, Feedback topologies, Effect of loading in Feedback, Effect of feedback on noise	8	3
4	Oscillators	Oscillation criterion, Ring Oscillators, LC oscillators, Voltage controlled oscillators Phase-Locked Loop: Simple PLL, Charge-Pump PLL, Delay locked loop	8	4
5	Operational Amplifiers	Performance parameters, One stage and two stage Op-Amps, Gain boosting, Common mode feedback, Slew rate, Power supply rejection, Noise in Op-Amp, Stability and Frequency compensation in Op-Amp Switched Capacitor Circuits: MOS as a switch, Different switched capacitors circuits, Applications as Amplifiers, Filters, Integrators and ADC/DAC	8	5
Referen	ce Books:			
1.	Razavi Behzad "I	Design of analog CMOS Integrated Circuits" Tata McGraw-Hill Edition, 2002		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
C01	3	3	3	2	2	1		1	2			1	3	2	2			
CO2	3	3	3	3	3	1			1			1	3		2			
CO3	3	3	3	3	2	2			2			1		2	1			
CO4	3	3	3	3	2	1			1			1		3	1			
CO5	3	2	3	2	2	2			2			1	3	2	1			

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session:							
Course Code	EC508	Title of the Course	ASIC Design and FPGA	L	Т	Р	С
Year	Ι	Semester	II	3	1	0	4
Pre-Requisite		Co-requisite					
Course Objectives	 To understand design iss operation, Arithmetic Ope To analyze basic libraries To understand ASIC libra Array Design, Standard ce To identify low level de Hardware description Lang To analyze basic concept FPGA, Permanently Prog design of FPGA fabrics, A 	sue in system deversion in Assembly in ASIC, can process ary design, CMOS ell design Programm esign entry, schem guages (VHDL & V of FPGA based sy grammed FPGAs a architecture of FPG.	elopment process. Able language programming. ss CMOS and its design r flip flop design, Library nable ASIC Design. atic entry and can unde /erilog). rstem, FPGA architecture nd can understand Chip A fabrics.	to po ule. 7 Arc erstan e, Stat s I/O	hitectu d ove tic RA) Circu	ure, G rview M bas uit bas	cal ate of sed

	Course Outcomes
CO1	Given a system Students shall be able to understand design issue in system development process. Able to perform
	Logical operation, Arithmetic Operation in Assembly language programming.
CO2	For a given system, student shall be able to analyze basic libraries in ASIC, can process CMOS and its design
	rule.
CO3	For a given transistors and resistors students can understand ASIC library design, CMOS flip flop design, Library
	Architecture, Gate Array Design, Standard cell design Programmable ASIC Design.
CO4	Students shall be able to identify low level design entry, schematic entry and can understand overview of Hardware
	description Languages (VHDL & Verilog).
CO5	For a given system, student shall be able to analyze basic concept of FPGA based system, FPGA architecture,
	Static RAM based FPGA, Permanently Programmed FPGAs and can understand Chips I/O Circuit based
	design of FPGA fabrics, Architecture of FPGA fabrics.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Embedded System & Microcontroller	Introduction to Embedded System, Design issue in system development Process, Design cycle in the development phase 8051µc: Architecture, basic Assembly language programming concepts, Instruction sets, Addressing Modes, Logical operation, Arithmetic Operation, Subrouters, Interrupt handling timing subrouters, Serial Data Transmission, Serial data communication	8	1
2	Introduction to ASIC	Types of ASIC, ASICs cell libraries CMOS logic: CMOS process, CMOS designrule, combinational logic cell, sequential logic cell, Data path logic cell, I/O cells cell compilers	8	2
3	ASIC Library Design	Transistors and resistors, transistors parasite capacitance, logical Effort, library cell Design, Library Architecture, Gate Array Design, Standard cell design Programmable ASIC Design: Anti fuse, Static RAM, EPROM and EEPROM Technology	8	3
4	HDL & ASIC	Low level design Entry, Schematic Entry, low level design, language, PLA tools, EDIF, Overview Hardware description Languages (VHDL & Verilog), Logical Synthesis VHDL Simulation, ASIC Construction, Floor Planning and Placement Routing.	8	4
5	FPGA Based System	Basic Concept, Digital Design & FPGA. FPGA Fabrics: FPGA architecture, Static RAM based FPGA, Permanently Programmed FPGAs,	8	5

	Chips I/O Circuit Design of FPGA fabrics, Architecture of FPGA fabrics,	
	Logic implementation of FPGAs Architecture	
Referen	ce Books:	
•	M.J. S. Smith /Application Specific Integrated Circuits/ Pearson Edu., 2005.	
•	K.J. Ayla /The 8051 Microcontroller/ Paperback 3rd Edition, July 2004.	
e-Lear	rning Source:	
L		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	2	2	1	1	1	1		1	3	2	1	3	1	1	1
CO2	3	3	1			1	1			1			3	1	1	1
CO3	3	2	2	2	1	1	1	1	1		2		3	2	1	
CO4	3	3	3	3	2	2	2		2		1		2	1	2	
CO5	3	3	2	2	3	2	1			3			2	1	2	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:									
Course Code	EC 509	Title of the Course	Fault modelling and testö	L	Т	Р	С		
Year	2nd	Semester	IV	3	1		4		
Pre-Requisite	VLSI Design	Co-requisite	IC Technology						
Course Objectives									

	Course Outcomes
CO1	To Understand the silicon crystal structures. Identify the orientations and explain their ffects and also
	nature and effects of impurities. To apply the Parametric problems to circuit sensitivities.
CO2	Analyze the Yield and failure models. Explain the Gate level testing and their fault models. chip level
	testing and their fault models.
CO3	Design and analyze of five valued logics Describe the application of truth table generation of
	standard gates, Boolean algebra its use in testing. Also to describe the Stuck-at faults.
CO4	List and explain the different CMOS test methods. TO understand Functionality and
	manufacturing test principles, ATPG, Fault grading, delay fault testing, Statical fault analysis designstrategies.
CO5	To understand the concept of Functional testing, Ad-hoc scan-based testing, self-testing.
	Differentiate between Chip level & system level testing examples.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Crystal fundamentals	Fundamentals of silicon crystal structures, orientation planes and their effects, nature and effects of impurities like carbon, oxygen etc., Parametric problems and effects in fabrication, circuit sensitivities	8	CO1
2	Fault and modelling	Yield, Yield loss, failure and models of failure analysis, Gate level testing andtheir fault models, chip level testing and their fault models	8	CO2
3	Fault analysis	Introduction to five valued logic, truth table generation of standard gates, Boolean algebra, its use and testing, Stuck-at faults.	8	CO3
4	Test pattern and strategies	CMOS test methods, Functionality and manufacturing test principles, ATPG, Fault grading, delay fault testing, Statical fault analysis design strategies	8	CO4
5	Testing methodologies	Functional testing, Ad-hoc scan-based testing, self-testing and IDDQ Testing, Chip level & system level testing examples	8	CO58
Referen	ce Books:			
1.	Lala P.K."Fault T	olerant and Fault Testable Hardware Design" BS Publication		
2.	Sze S.M. "VLSI T	echnology" TMH Publication		
3.	Weste Neil H.E., I	Eshraghian Kamran "Principle of CMOS VLSI Design" 2nd ed Pearson		
4.	Hurst Stanley Leo	nard "VLSI Testing" IEEE Circuits and Devices Series		
o-Loor	ning Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	3	2	1	1	1		1	1			3	2	3	2	1		
CO2	3	3	3	3	3	1			1			1	3	3	2			1
CO3	3	3	2	3	3	1			1			1	3	3	1		1	1
CO4	3	3	3	2	2				1			1	3	2	2		2	2
CO5	3	3	2	3	3				2			1	3	2	2		2	2

Sign & Seal of HoD

Effective from Session: 2022	2-23						
Course Code	EC510	Title of the Course	VLSI Design lab	L	Т	P	С
Year	Ι	Semester	Π	0	0	2	1
Pre-Requisite	EC510	Co-requisite					
Course Objectives	To pract Softwar the desig Modelsi and also	tice the fundamentate e for simulatingthe gn of various digital m and Xilinx. The learn the usage of c	l programming methodologies using the Xilinx si Combinational and sequential logic circuits. This circuits using different VLSI simulation softwar outcome of this course is to learn VHDL and Ver lifferent tools.	mula cour e too ilog l	tion se pro ls like angua	vides ge	

	Course Outcomes
CO1	Acquire knowledge about High Speed VLSI Circuits Design.
CO2	. Identify the basic Back-End-Of -Line Variability Considerations.
CO3	Understand the Method of Logical Effort.
CO4	Understand the Circuit Design Margining and Latching Strategies
CO5	Understand the Clocking Styles.

Exper iment No.	Title of the Experiment	Content of Unit	Contact Hrs.	Mapped CO
1	Digital basic gates	Design of basic Gates: AND, OR, NOT.	2	CO1
2	Universal gates	Design of universal gates.	2	CO1
3	2to 4 Decoder	Design of 2 to 4Decoder.	2	CO2
4	Half-Adder, Full- Adder	Design of Half-Adder, Full Adder.	2	CO2
5	Half-subtractor,Full- Subtractor	Design of Half Sub tractor, Full Sub tractor.	2	CO3
6	3:8 Decoder	Design of 3:8Decoder.	2	CO3
7	S-R Flip-Flops	Design of S-R Flip-Flops using(if-then-else) Sequential Constructs.	2	CO4
8	J-K Flip-Flops	Design of J-K Flip-Flops using(if-then-else) Sequential Constructs.	2	CO5
e-Lear	ming Source:			
https:/	//www.vlab.co.in/			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1	3	1	1	1	1		2	1	3	3	2
CO2	3	3	3	2	2	1			1		2	1	2	2	
CO3	3	3	3	2	2	1			1		2	1	2	2	
CO4	3	3	3	2	1				1			1	2	2	
CO5	3	3	2	2	1				1			1	2	2	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD